C H A P T E R 9



[image: image1.png]» @SB coment

Add content Find content

Dashboard

Recent content

new

Jiuuwrasti
new.
drusluswasa
necibepr
Kafredoclofr
lacawi]
new

dronidetewr

drerigenof

Recent comments
No comments available.
‘Who's new

« editor
« admin

Hello editor

Log out

[image: image2.png]User login

Password *

 Create new account

© Request new password

Log in

CHAPTER 9 n DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM

CHAPTER 9 n DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM

 Docume
nting
 for End Users, the Production Team, and the Community

By Dani Nordin with contributions from Claudina Sarahe
Documentation is one of those things that many designers and developers hate doing, but it’s necessary - not only for the happiness of clients and editors who have to take over a site, but also for preventing the production team from making the same mistakes over and over again.

This chapter gives an overview of creating effective documentation for Drupal project teams. The chapter particularly focuses on importance of documentation for end-users-editors and site administrators-and in-house documentation for the production team to help increase the efficiency of your workflow. We start by looking at elements of good documentation Lastly, we’ll discuss some ways that members of the Drupal community have found to create documentation for the benefit of their fellow Drupallers - and how you can do the same.

What makes good documentation

Whether you are an individual or a large team, having an established set of principles for documentation is criticial to ensure longevity, sustainability of the documentation. Juat as brand and style guides serve to keep the integrity of the product, documentation guidelines keep the integrity of the documentation. While there’s no set formula for good documentation, there are a few things to bear in mind when creating documentation. Good documentation:

· is easily editable, and evolves with the site;

· is consistently formatted (i.e. you don’t have to reinvent the wheel every time you create the documentation);

· includes visuals (i.e. screenshots)
· covers the most common things a user needs to worry about first - preferably in the order that they need to worry about them;

· discusses common errors the user might run into and how to troubleshoot them; and

· is written plainly .

That last point is important to bear in mind when creating documentation - whether it’s for a client site, a Drupal module or theme, or your team’s internal documentation. This is not to say that there’s no place for code or technical requirements in documentation; rather, it’s to say that it’s important to assume that your audience is not the expert that you are, but is willing to GAIN that expertise if you’re willing to give it in a way that makes sense to them.

When working with a team of people to write documentation, the guidelines that you adopt are ultimately based on your needs. Drupal.org, for example, has a “Documentation” role that allows that user to freely edit documentation posts and add pictures to their additions. Technically, anyone with a Drupal.org user account can edit documentation, but the user's access to certain pages is limited based on access to text formats with security implications. The documentation role provides access to most of these, but a few pages that define policy are further locked down. As usual, the larger the team or individuals that are contributing, the more imperative it becomes to establish guidelines.
Make sure that your guidelines for documentation are easily accessible and read by everyone. In short, documentation guidelines will help others make your documentation better.
Tools for creating and maintaing documentation

Choosing a tool for creating and maintaing documentation can be daunting because there isn't one tool that is btter than other. In fact, the best tool is the one that you will actually use. When deciding on a tool, there are some good points to take into consideration to ensure selecting a good fit

· How large is the team? A large team has different needs than a small team or an individual. Managing shared Dropbox folders of text documents can be unweidly for large teams but work extremely effectively for smaller teams.

· How often is there turnover?

· What tools does the team comfortable with? It might seem silly but it is easier to gain adoption when the entry barrier isn't foregin or completely unknown.

There are some good features to look for when deciding on tools:

· Select a tool that manages revision history. Revision history is important for individuals and teams. It is also a fantastic way to keep a record of the documentation evolution, critical for learning and knowledge advancement

· User management
There are many tools out there to choose from. The following list are mostly free, low-cost tools. Open Atrium or Wikis are my personal tools of choice.

· Drupal: A Drupal installation can quickly turn into your own documentation site

· Open Atrium: Open Atrium, created by Development Seed, is a tool for managing communication. (@TODO: example of how to use atrium for documentation). Web based system.
· Wiki: Wikis are incredibly effective for documentation creation and management. Wiki syntax is fast, almost everyone has had exposure to a wiki (ex. Wikipedia); they are collaborative tools by nature; they track revision history. Wiki's are web-based systems.
· Evernote: Evernote notebooks can be shared with anyone that has an email address. Free versions restrict users with access to just view mode, purhcased plans allow users to edit. Evernote has tags to help categorize content and revision history. Evernote is great tool for mainting collections or snippets of code information that can be organized into notebook collections and tags. Multiplatform and webased.

· Dropbox: Dropbox is good if you are choosing to build your documentation in text files. Folders can be shared, but requires that all participants have a Dropbox account. Dropbox is a hybrid off- and online approach. Dropbox tracks revision history.
· Screen capture tools: There are a myraid of tools available from browser extensions to standalone programs. Some common ones: Sitch, Google Chrome, Firefox.
If you have the time, try out various tools. The solution that works best for you and your team could also be a hybrid of some of the options listed above. Whatever your solution, once you've established “Where” you will document, you need to focus on “How” to document. In the next section we look at the importance of establishing a logical organization to your documentaiton.
The principles of what makes good documentation and tools for documentation apply to all forms of documentation. For the rest of the chapter we will focus on documentation needs and nuances of three user-groups: the end-user, the production team, and the community.
Documenting for the end-user

End-users refer to clients, site editors or administrators that manage the content and placement of content of the site. One of Drupal 7's strong points is its revamped user-exeperience for the end-user. More often than not, end-users are overlooked; enhancements to the administrative interface and workflow come secondary to the site. We tend to do very little beyond what Drupal provides. Now thankfully Drupal 7 provides a lot; its revamped user experience—from customizable admin toolbar to the overlay—can make it tempting not to think you have to change much. It can seem daunting or almost impossible to budget time to making improvements, but it will save the client money down the line. Don't forget that their experience and ability to maintain the site is what makes the users of site experience and developers and designers work come to life.

The anatomy of good client documentation

End-user documentation follows all the points listed in earlier section “What makes good documentation”. When it comes to end-user documentation it is important to stress that documentation is written in language that is easily understandable by people with a baseline of technical knowledge--assume your end-user don’t know HTML.Addtionally, the following points will help you build better end-user documentation:

· Build as much documentation into the site interface

Update the description of content types to reflect how they are used on the site

Change the default help text to support the site

Hide sections and options that don't serve end-users needs. This can be handled on a per role basis. For example: if your end-users don't have any HTML knowledge, they don't need to the option to change the input type when entering content. Additionally, WYSIWYG toolbars can be configured to only provide the necessary formatting options to end-users.

· Make sure to cover everything that the client’s management team is going to have to deal with when managing the site

· Involve the end-user in the creation process (the following sections cover this point more in more detail)

· Be open to changes from the client

· Think Back to Basics. Remember that your end-users might not have any Drupal or content management experience. Remember what it was like when you first started.
The process of creating documentation is not complicated, but often requires a slight shift in thinking for someone who’s used to being nose-deep in code. The basic process is to do everything that a site editor would have to do - from creating a new piece of content to changing a menu item to adding a taxonomy term - and document the process with screen shots.

For these reasons, I tend to use a straight word processing program, like Microsoft Word or OpenOffice, to create site documentation. For the documentation team, it gives them the ability to create documentation quickly, and easily update it when the site changes. The files are delivered to the client as a PDF file, which helps ensure that things don’t get deleted accidentally down the line.

For example, here’s a bit of sample documentation from the site that we built in the “Install” and “Build” chapters.

SITE DOCUMENTATION :: dgd7.org
This documentation will help you update content and work[image: image3.png]# Dashboard Content Hello editor Log out

Add content | Find content

Add content

‘This is a sample chapter from the book.

‘We encourage readers to offer constructive suggestions, comments and anecdotes for inclusion in the Definitive Guide to Drupal 7. Please keep your suggestions brief, to the point, and
most of all clean!

 with the backend of your new Drupal

site.
Logging into the backend
On the left side of page, you’ll see a “user login” box.
Your username is editor

Password is site_admin
Using the Admin Menu and Dashboard

The admin menu at the top gives you access to control the site’s content. Clicking on the Dashboard link will show you a list of recent content, recent comments, and newly registered users.

About Content Types

The site’s content is based on the following content types:

· Chapter: These are sample chapters of the book. They can only be posted by site authors, and do not allow comments.

· Suggestions: These are suggestions, tips and anecdotes for consideration in the next version of the book. These can be created by any registered user, and must be approved by a moderator before they can be viewed on the site.
Create Content: Chapter

To create a sample chapter, Click “Add content” from the shortcut menu, and Chapter from the content listing.

Chapter pages are set up with the following fields:

· Title - the title of the chapter

· Author - the author of the chapter

· Body - the text of the chapter
To add the content, simply fill out all the fields, hit “Save,” and the chapter will be published!

For deeper, more complex sites, you’d include more information on specific fields, whether they’re required, taxonomy menus, etc. One particularly nice feature in Drupal 7 is the ability to customize the Dashboard and shortcut list (the gray bar underneath the admin menu) for each role. This makes the site editor’s work easier - and your documentation easier to write as you can focus it per role.

Don't wait until the end to start documentation

The best, and easiest, way to create effective documentation for clients is to do it during the site building process. Iterative documentation creation ensures that documentation a) actually gets written, and b) that the documentation written is usable. While every site is different, there are key areas that will need to be covered for most sites. In fact, because these key areas are so universally common across sites that I strongly advise writing a documentation primer that you can reuse for all clients. This document is then extended to cover the unique needs of the site. Common key areas worth include
:

· Information on how they log into the site, including where they go to, and what their username and password is.

· A brief overview of the administration menu, and any shortcuts that you’ve set up;

· How to add content, and how content is formatted for each content type. While it can seem repetitive to include an entry in the documentation for each content type, getting into the habit can be extremely useful - especially for clients who aren’t terribly tech-savvy.

· If applicable, information on how to create new users, and how to assign them roles.

· A brief overview of the menu system and how to add/remove menu items.

· A brief overview of the taxonomy system and how to add/remove terms.

· A brief overview of the block system and how to add/remove blocks.
A brief comment on the last three items, as they can be controversial. Many developers resist giving clients the level of control over their site’s architecture and access to blocks and with good reason. However, experience shows time and time again that clients expect and often demand that level of control - after all, part of the reason they choose a content management system such as Drupal is that they want the ability to manage their content without having to call their web team.

The level of freedom and control granted to end-users is based on the needs of the client and goal(s) of the site. Developers and designers should engage in conversations with the client about this early in the planning process. Take into consideration their level of expertise. Allowing end-users more freedom to manipulate and place information is so common that in the past years a number of really good modules have been developed to handle the balance between granting freedom to non-developers and preserving the integrity of the site. For more information, I recommend Context Module (@TODO link here) and Panels module (@TODO link here).
Getting clients into content entry early

Since content curation, creation, and entry form such an important part of any Drupal site, one of the best ways to ensure quality documentation and adminsistrative interface is to get your client’s intended content team to start entering content into the site as soon as possible. Doing this accomplishes several key goals:

· It gets the development team into the habit of rapidly iterating prototypes;

· It gets the client used to interacting with the Drupal interface;

· It helps identify areas that need tweaking early in the process, which makes development easier;

· It's educational and gives the client a sense of the complete development process, and moves them away from concerns about aesthetics (i.e. What things look like) and towards user experience and functional concerns until you’re ready to actually alk about what things look like.

Getting clients involved in the process will more than likely require changes to how you approach project planning and development process. You will need to plan for time to review the administrative interface as part of your release cycles and/or development process. You might have to make changes to your staging and deployment process. Setting up a staging server is a fantastic way to allow
both clients and the development team to see how a project is progressing, and prevents the world from seeing the work as it’s happening on the production (i.e. live) site. For more on this, check out the chapter on Staging and Deployment.

Don't get discouraged if you don't get it right the first time. Each project will help you refine your process, prepare and learn from unknowns and ultimately discover the best method that works for you and your team. Don't be afraid to solicit feedback from your end-users!
The approaches we've outlined aim to enusre that by the time the site goes live, your client’s content team will (ideally) have enough experience with managing content in their Drupal site that it will become second nature. These approaches help save you and your client time and potential anguish. The person who’s entering content into the site now isn’t necessarily going to be the only person who enters content into this site until the end of time-- people change jobs, interns get hired, and used for things like updating the website. Finally, these approaches help strengthen and build client relations. By taking the time to build documentation and involve the client in process you demonstrate a care and concern for their needs and site.

·
·
·
·
·
·

·
·

·

·

·
·

Documenting for the development team

The importance of internal documentation for development teams can not be understated. Documentation ultimately represents your knowledge.It’s incredibly easy to keep things in our heads - especially if you are the only one touching things--but this approach prevents benefiting and growth from knowledge and causes problems when other folks come into the picture and on large scale projects.

When creating internal documentation is isimportant to think of not only the team and process you currently have (whether it’s just you or a larger team), but the team and process that you ultimately want to have. The main reason for this is that teams grow - old members leave, new members come in. Having good internal documentation gets new team members up to speed quickly, helps avoid production bottlenecks and ensures that you don't spend time reinventing the wheel
The most important, and often hardest, factor in creating good internal documentation is creating a logical organization for it; having everything stored in a common location is important, as is adding comments or references for code snippets, blog entries, and other pieces of documentation you decide to save. Lastly, it’s important to periodically look through documentation and weed out old or outdated information. Drupal evolves consistently, as does the team’s development experience; the point of documentation isn’t to cover everything you’ve ever done, but rather to compile a list of best practices that the team can share among themselves.

 Good internal documentation
should cover:

· Code snippets that the team uses over and over again, with a description of the use case;

· Idiosyncrasies with specific modules, and what the team did to fix them (bonus points if you contribute the code as a patch to the module!);

· A site launch checklist, which covers commonly encountered issues (and how to recover from them) for launching sites;

· Site “recipes” for commonly built sites (e.g. Combinations of specific modules and configurations);

· Locations of commonly used files, modules, site configurations and base themes (more on theming in the Theming chapter
);

· Coding and development standards shared by the team.

Documenting for the community

While contributing code is a great way to contribute to the Drupal community, another important way to contribute to Drupal is in the form of quality documentation. Good documentation is essential not only for current Drupal site builders and designers for helping them work through sticky issues, but it helps new site builders ease into creating sites in Drupal, which makes the community stronger.

There are several ways that Drupallers can contribute documentation back to the community. One of the more popular ways is via webcasts; for example, the Lullabots (lullabot.com) have a number of paid and free webcasts
 that cover concepts related to working in Drupal. Bob Christenson’s MustardSeed Media video podcast (

 HYPERLINK "http://mustardseedmedia.com/podcast"
mustardseedmedia.com/podcast) is a great way to get used to theming and working with display modules. The screencasts offered by Drupaltherapy (www.drupaltherapy.com/screencasts

) focus on site building, using recipes of specific module combinations. A quick Google search for the problem you’re trying to solve will likely bring several examples of how others in the community have solved a similar issue.

While many of the above listed screencasts are focused on concepts in Drupal 6 (and there are certainly many other wonderful examples out there that we’re missing in this chapter), that’s why we mention them here. Because without people like these in the community, making the content that helps us learn and continue learning how to use Drupal, many smart and talented designers and developers would not be part of the community.

So, if you are working in Drupal and you learn something new, blog about it. Or do a screen cast. If you find something that doesn’t work with a module, contribute it to the issue queue on drupal.org. Mention it on Twitter. And don’t be surprised if you get an e-mail one day thanking you for your contribution.

Writing Documentation for Drupal.org

Perhaps the most important way to help Drupal, and certainly one of the best ways to learn, is to contribute documentation to Drupal.org. Complete, quality documentation for people developing, administering, or simply using a Drupal site can make or break any Drupal project - whether module or theme. You could build an insanely powerful Drupal module with all the bells and whistles anyone could want; have it all work perfectly without a single bug, but it won't matter if nobody knows how to use it.

The misconception that one can't write documentation or is not qualified to write documentation because one doesn't know enough about writing or doesn't know enough about Drupal needs to be squashed up front.

First, it's much easier for someone else to come along and improve the writing style or technical detail of existing documentation than it is to write it from scratch and find where it belongs. There are many terrific projects on Drupal.org in need of more complete documentation - if you use a module or theme, and like it, you can probably improve its documentation.

Additionally, a lack of Drupal sophistication can be a distinct advantage in a documentation writer. It makes you much more likely to notice areas where users will need help, processes that make no sense, and places which beg for explanation.

You also have here an entire book of information which may or may not be well-documented on drupal.org, and it is licensed such that you can borrow from it and put it where it belongs (HINT!).

Anyone logged in to drupal.org can edit the documentation there. That's all you need to know to get started! You certainly do not have to set out with the single-minded goal of contributing to documentation to make a big impact— as you develop with or configure Drupal, improve the documentation whenever it lets you down.

Any logged in user can also create documentation pages via http://drupal.org/node/add/book, but before you go that far, it’s useful to do a search and make sure what you want to add doesn't already exist. Adding links to related documentation so the next person finds the right page quickly from where you expected to find it can be some of the most high value, low effort contributions you make.

Note The people putting the most time into documentation really do not like comments on documentation pages (and in fact are trying to kill them, and probably will have by the time you read this; see http://drupal.org/node/810508 for the issue tracking that effort). If you have information to add or correct, please edit the page itself. If it is a change needs discussion, find or file an issue about it in Drupal’s Issue Queue (see the Participate chapter for more info).

Some pages can only be edited by people given the 'documentation' role on Drupal.org. If you are already a regular contributor to the other documentation pages, you will probably be granted a request to be given this role, which lets you post content with tables and images. A full guide on getting more involved with documentation – formally joining the documentation team – is online at http://drupal.org/contribute/documentation and http://drupal.org/contribute/documentation/join.

The More You Know

Good documentation isn’t about adding more work to an already busy schedule. It’s about saving your clients, yourself, and the community from major headaches and aggravation when working with the great sites you build with Drupal. It’s about saving yourself from frantic midnight e-mails from clients who can’t figure out how to add a page to the site. And about saving the next Drupaller from dealing with the headaches you’ve been dealing with fiddling getting a certain module or theme to work. And about knowing where to find that trick you learned in that one site that you wish you remembered now. Good documentation helps everyone - so the sooner you can get started compiling it, the better.

�

Ben Renow-Clarke 1/18/11 2:50 PM

What’s here is good, but it’s incredibly short. Could we add a bit more – maybe some examples of documentation? Are there any standards in place for creating documentation? Anything else we could add would be very handy. At the moment this is so short that it feels more like an appendix than a chapter. It may be that it was always going to be this short, but it feels like there could be a bit more to add.

�

Richard 1/13/11 2:00 PM

Useful chapter: lists make content easier to read.

For a chapter on documentating, I was expecting at least a few examples of Drupal-specific documentation: e.g., example comment in a module for Drupal - this is good because the author does x. Other examples showing what is bad practice for commenting/documentation?

�

Richard 1/13/11 2:03 PM

Can be difficult if there’s no WYSIWYG editor on the site!

�

Dani Nordin Jan 19, '11, 4:44 PM

Richard, good point. I forgot to mention that I recommend having a WYSYWIG editor on sites. The idea of forcing a non-tech-savvy client to learn HTML or Markdown is ridiculous.

�

Richard 1/13/11 2:03 PM

Useful overview for readers

�

Dani Nordin Jan 19, '11, 4:44 PM

need chapter ref

�

Richard 1/13/11 2:03 PM

Useful overview for readers

�

Dani Nordin Jan 19, '11, 4:53 PM

need chapter ref

�

Richard 1/13/11 2:03 PM

Can be difficult if there’s no WYSIWYG editor on the site!

�

Dani Nordin Jan 19, '11, 4:44 PM

Richard, good point. I forgot to mention that I recommend having a WYSYWIG editor on sites. The idea of forcing a non-tech-savvy client to learn HTML or Markdown is ridiculous.

�

Dani Nordin Jan 19, '11, 5:27 PM

Do we actually show how to do this anywhere? Should we add it to the site building chapter? It may be too late in the game for that.

�

Richard 1/13/11 2:02 PM

Such as MediaWiki - be nice to give a URL to a wiki software here in case reader wants a recommendation/to look in to this route for docs

�

Richard 1/13/11 2:01 PM

Good to see list of ‘good’ documentation. What about a list of ‘bad’ habits for documentation? To contrast here?

�

Ben Renow-Clarke 1/18/11 2:46 PM

Give chaper ref.

�

Ben Renow-Clarke 1/18/11 2:47 PM

Interesting that we’re discussing webcasts here, they wouldn’t have occurred to me as documentation. Perhaps make more of that – that documentation doesn’t just mean text files.

�

Richard 1/13/11 2:00 PM

Good use of external resources here - useful for readers

�

Ben Renow-Clarke 1/18/11 2:48 PM

Agreed, it would be nice to have a bit more here – and definitely a conclusion summing up the chapter.

�

Richard 1/13/11 2:16 PM

Abrupt ending to chapter: summary section might be a good finish?

11
11
11

